Recipe of dark matter can include a supercritical fluid

Date:

2017-06-19 11:00:11

Views:

3494

Rating:

1Like 0Dislike

Share:

Recipe of dark matter can include a supercritical fluid Source:

Through years of research, it became clear that dark matter behaves abominably. This term was introduced about 80 years ago by astronomer Fritz Zwicky who realized that in order to prevent individual galaxies to escape in a gigantic galactic clusters, some of the gravitational force. Later Vera Rubin and Kent Ford used invisible dark matter to explain why galaxies do not fly.

However, although we use the term "dark matter" to describe these two situations, it is unclear whether involved in each of them the same culprit. The simplest and most popular model says that dark matter consists of weakly interacting particles that move slowly under the force of gravity. This so-called "cold" dark matter describes large scale structures such as clusters of galaxies. But it is bad with predicting rotation curves of individual galaxies. Dark matter is like different acts on the same scale.

In an attempt to resolve this puzzle, two physicist recently suggested that dark matter can change phase when you change the scale. Justin Hori, a physicist at the University of Pennsylvania, and his former PhD student Lasha, Berezhiani working at Princeton University, says that in cold and dense environment of the galactic halo dark matter condenseries in the supercritical liquid is an exotic quantum state of matter with zero viscosity. If dark matter forms a supercritical fluid in a galactic scale, may be a new force, which would explain the observations that do not fit the model of cold dark matter. But the scale of galactic clusters the special conditions required for the formation of the supercritical state, does not exist; here the dark matter will behave as ordinary cold dark matter.

"It's a great idea," says Tim Tait, particle physicist from the University of California, Irvine. "Two different types of dark matter describes one thing." And soon this curious idea you can check. Although other physicists have already considered these ideas, Hori and Berezhiani close to extract verifiable predictions that would allow astronomers to explore, swim, whether our galaxy in a sea of supercritical fluid.

the

Impossible superfluids

On the Ground overcriticize liquid you can't call something mediocre. But physics are prepared in their laboratories in 1938. Cool the particles to a sufficiently low temperature, will manifest their quantum nature. They will begin to worry, and the waves will overlap, until eventually begin to behave like one big "swashata". They become coherent, like the particles of light in the laser that have the same energy and vibrate as one. Today, even the students create Bose condensates — Einstein in the laboratory, many of which can be classified as a supercritical fluid.

Phenomena of superfluidity in the everyday world does not exist — too warm, in order to manifest the desired quantum effects. Because of this, "ten years ago people just would have refused this idea and said that it is impossible," says Tate. But in recent years more and more physicists are coming to believe that supercritical phases are formed naturally in the extreme conditions of space. Superfluidity may be in neutron stars, and the very space-time, according to some, may be a supercritical fluid. Why would dark matter not to be such?

To make a set of particles by supercritical fluid, it is necessary to fulfill two conditions: packaging of the particles with high density and cool them to extremely low temperatures. In the physics lab (or student), limit of a particle in an electromagnetic trap, and then irradiated with laser to remove kinetic energy and lower the temperature to near absolute zero.

Inside galaxies, the role of the electromagnetic trap will play the gravitational pull of a galaxy, which will compress the dark matter is enough to satisfy the criterion of density. With the temperature simpler in space is very cold.

Outside of the halo are detected in the vicinity of galaxies, gravity is weaker, and the dark substance will not be Packed tight enough to go into the supercritical state. She will act like regular dark matter, explaining what astronomers see on a large scale.

In rotating superfluid helium formed a small vortex

But what's so special about that dark matter is a superfluid? As a special condition to change behavior of dark matter? In recent years, many scientists have thought about this issue. But the approach of Hori unique because it demonstrates how superfluidity could give rise to a new force.

In physics, if you break the box, you create a wave (often). Shake a few electrons, e.g., in antenna and you violate the electric field and receive radio waves. Alarm gravitational field of two colliding black holes — and receive gravitational waves. Similarly, if you push overheadcosts, you will produce phonons — sound waves in superfluid itself. These phonons give rise to an additional force in addition to gravity, the same electrostatic force between charged particles. "That's good, because you have more power over gravity, while internally tied to dark matter," says Hori. "It is an environment property of dark matter gives rise to this force." It could explain the strange behaviour of dark matter in the galactic halo.

the

Another particle of dark matter

Hunters of the dark matter looking for it for a long time. Their efforts were concentrated on the so-called weakly interacting massive particles, or WIMP. WIMP was popular because these particles not only could explain the majority of astrophysical observations, but also come naturally from the hypothetical extensions of the Standard model of particle physics.

However, no one has ever seen a WIMP, and these hypothetical extensions of the Standard model didn't show in the experiments, much to the dismay of physicists. With each new zero-sum prospects brood more and more, and physics are increasingly considering other candidates for dark matter. "At what point should we decide that barking up the wrong tree?", asks Stacy Makkah, an astronomer at the University of Case Western Reserve.

Particles of dark matter, which implies the work of Hori and Berezhiani, strongly similar to WIMP. WIMP needs to be pretty massive for a fundamental particle — about 100 proton masses. To load the script, houri, dark matter particles must be a billion times easier. Accordingly, the Universe will be billions of times more — and that's enough to explain the observed effects of dark matter and to achieve the density required for the formation of the supercritical fluid. In addition, the usual WIMP does not interact. But superfluid dark matter particles will strongly interact.

The Closest candidate is the axion, a hypothetical ultralight particle with a mass that can be 10,000 trillion trillion times smaller than the mass of the electron. In the words of Chanda Prescod-Weinstein, theoretical physicist at the University of Washington, axions could theoretically be condensed to condensate the Bose — Einstein.

But the standard axion does not entirely satisfy the needs of Hori and Berejiani. In their model, the particles should experience a strong repulsive interaction. Typical models of axions interact weakly and attracting. By the way, "I think everyone believes that dark matter interacts with itself at a certain level," says Tate. We only need to understand the strong or weak interaction.

the

In search of a space of superfluidity

The Next step for Hori and Biriyani will be figuring out how to test their model is to find the little signature that could distinguish the concept of the supercritical fluid from the usual cold dark matter. One possibility: the vortices of dark matter. In the laboratory rotating supercritical fluid give rise to twisted vortices, which continue without losing energy. Halo superfluid dark matter in the galaxy must rotate fast enough to create arrays of vortices. If these vortices were massive enough, they could be detected directly.

Unfortunately, this is unlikely: the latest computer models, Hori show that vortices in a superfluid dark matter are "pretty flimsy" and unlikely to exist in reality. He suggests that it would be possible to use the phenomenon of gravitational lensing to see any effects of scattering, similar to how the crystal scatters the x-ray passing through it the light.

The Astronomers could also look for indirect evidence that dark matter behaves as a supercritical fluid. To this end, they will study the mergers of galaxies.

The Speed at which galaxies collide among themselves, is determined by the dynamic friction. Imagine a massive body passing through a sea of particles. Many smaller particles will be attracted massive body. And since the total momentum of the system does not change, the massive body needs will slow down to compensate.

This happens when two galaxies begin to merge. If they get close enough, the halo of their dark matter will begin to pass one through the other, and the rearrangement of independently moving particles will lead to dynamical friction, pulling halo closer. This effect helps galaxies to merge and increasing the pace...

Recommended

What will be the shelter for the first Martian colonists?

What will be the shelter for the first Martian colonists?

Mars is not the friendliest planet for humans While the Red Planet is roaming rovers, researchers are pondering the construction of shelters and materials needed by future Martian colonists. The authors of the new paper suggest that we could use one ...

New proof of string theory discovered

New proof of string theory discovered

Just a few years ago, it seemed that string theory was the new theory of everything. But today the string universe raises more questions than answers String theory is designed to combine all our knowledge of the Universe and explain it. When she appe...

What is the four-dimensional space?

What is the four-dimensional space?

Modeling camera motion in four-dimensional space. View the world in different dimensions changes the way we perceive everything around, including time and space. Think about the difference between two dimensions and three dimensions is easy, but what...

Comments (0)

This article has no comment, be the first!

Add comment

Related News

How much in the Universe of black holes?

How much in the Universe of black holes?

for the third time In history, we directly black holes: gravitational waves, resulting from the merger. In combination with what we already know about the stellar orbits near the galactic center, x-ray and radio observations of ot...

Strange habits of albert Einstein: what can we learn from genius?

Strange habits of albert Einstein: what can we learn from genius?

the Famous inventor and physicist Nikola Tesla was often flexed toes. Every night he repeatedly "squeezed" fingers 100 times on each foot, according to writer Mark Cypher. Although it is not clear that even included his exercise, ...

Physicists have found a possible breach in the Standard model

Physicists have found a possible breach in the Standard model

Physicists from the University of California at Santa Barbara have discovered a phenomenon that can not fail under any fundamental assumption, which adheres to the Standard model of physics. This conclusion was made after scientis...

Artificial intelligence to learn to recognize speech among noise

Artificial intelligence to learn to recognize speech among noise

Virtual assistants and voice recognition fairly well learned «to know» what they person says, and follow his commands. But for this to work the same for Siri and Cortana, background noise can become a big problem. To cop...

Scientists have approached the creation of units for artificial photosynthesis

Scientists have approached the creation of units for artificial photosynthesis

Oxygen is the basis of life of all creatures on our planet. And there he was, as we know from school biology course, in the process of photosynthesis taking place in leaves and stems of plants. Scientists with varying degrees of s...

Created the first two-dimensional magnet with a thickness of one atom

Created the first two-dimensional magnet with a thickness of one atom

according to the editors of the journal Nature, a group of scientists from the University of Washington managed to get a connection on the basis of chromium and iodine. The structure of the compound is something of a counterpart o...

What it's like on the edge of the Universe?

What it's like on the edge of the Universe?

There is a threshold beyond which we cannot go, there are things we will never know. But one thing we do know, and we have powerful tools: science, imagination, analysis. 13.8 billion years ago the universe as we know it, was born...

Scientists from the UK told why dinosaurs cannot be brought back to life

Scientists from the UK told why dinosaurs cannot be brought back to life

it is Difficult to find anyone who has not heard about the film series «Jurassic Park», launched in 1993 by Steven Spielberg. The theory of the return of the dinosaurs by cloning, as shown in the film still looks pretty ...

Mission to the sun protects us from solar storms and assist in space exploration

Mission to the sun protects us from solar storms and assist in space exploration

Prayer, sacrifice, the sun — you can tell people worshipping the sun since time immemorial. This is not surprising. It is only 150 million miles away is close enough for its light, heat and power supported by the entire human race...

American scientists have created a soft robot

American scientists have created a soft robot

From may 29 to June 3 in Singapore held the international conference on robotics and automation. In the framework of this event, scientists from the United States presented almost entirely soft robot. Their invention has 4 limbs a...

Why heat kills cells?

Why heat kills cells?

If the temperature rises above a certain threshold, the cell collapses and dies. One of the simplest explanations of this lack of heat is that the proteins necessary for life, are those which extract energy from food or sunlight, ...

10 high profile cases when the scientific laurels went not to the

10 high profile cases when the scientific laurels went not to the

In school we learn about all scientists because they have made invaluable discoveries and found a lot of important decisions in everything from horrible diseases to brilliant technologies. However, the history is often not what yo...

What happens when it evaporates, the singularity of a black hole?

What happens when it evaporates, the singularity of a black hole?

Not so easy to imagine, given the diversity of the forms taken by matter in the Universe, over millions of years, there was only neutral gas atoms of hydrogen and helium. And similarly, it is difficult to imagine that one day, in ...

MIT staff have learned

MIT staff have learned "programming" pasta

Scientists from the Massachusetts Institute of technology are engaged not only in developments in the field of robotics and electronics, but also in the field of modernization of the food industry. Not long ago, during a conferenc...

Fluctuations of space and time: the proposed new explanation of dark energy

Fluctuations of space and time: the proposed new explanation of dark energy

In the new study, scientists at the University of British Columbia suggested that the universe is expanding due to the fluctuations of space and time. At the moment around the mysterious dark energy has crowded a lot of confused t...

The chances of your appearance was not so small

The chances of your appearance was not so small

in order For you have existed, a lot of incredible events had to unfold in a certain way. The right egg and sperm were to meet, to create you with a specific DNA sequence, and breathe in you life; one sperm's chance of 1 to 250 00...

Can human consciousness affect the physical world?

Can human consciousness affect the physical world?

Perhaps one of the most intriguing and interesting phenomena in quantum physics that Einstein called "spooky action at a distance", also known as quantum entanglement. This quantum effect is the basis of quantum computers as quant...

Can the universe one day collapse?

Can the universe one day collapse?

One of the greatest achievements of the 20th century was the precise definition of how big, broad and massive is our universe. With about two trillion galaxies, enclosed in a volume with a radius of 46 billion light years, our obs...

Launched the first in Russia multi-node quantum network

Launched the first in Russia multi-node quantum network

Scientists from the Russian quantum center (RCC) managed to launch the first in Russia multi-node quantum network intended for data transfer. In the development of domestic experts used two methods of encrypting information that m...

Microsoft creates cloud-based storage system based on DNA

Microsoft creates cloud-based storage system based on DNA

Research in the field of new media are now almost all large corporations. But the research group Microsoft Research went, I think, the farthest. Last year, the developers have stated that the storage of information. And according ...