Why is the first "Satellite" fell to the Ground just three months?

Date:

2018-11-26 14:45:21

Views:

25

Rating:

1Like 0Dislike

Share:

Why is the first

October 4, 1957 the Soviet Union launched "Sputnik 1" which rose above the earth's atmosphere and went into orbit of our planet, making a complete revolution around it in 90 minutes. In conditions of clear sky peace of those times, it was the only kind of object: artificial, man-made satellite. Unofficially, this meant the beginning of the space race, military and political activities which for decades was fascinated by international politics.

But "Satellite" in Earth orbit has not. In fact, he stayed there so long that by the time of the launch of Explorer 1, first U.S. satellite in space, around the Earth for quite some time flying the "Sputnik 2" with the first animal in space. But the original Sputnik, completing 1400 orbits, fell to the Ground.

What happened to the "Companion" was quite expected. In fact, this happens with most satellites, if you launch them into orbit and give to themselves. With each completed orbit, the first satellite reaches the apogee, the maximum distance from the Earth's surface, and then the perigee, the closest it approaches Earth. For low earth orbit it essentially means that the satellites are within a few hundred kilometers above the Earth's surface. Given that the line separating the Earth's atmosphere and outer space, is at an altitude of only 100 kilometers, at first glance it may seem that the satellites must permanently remain in space.

But in reality the situation is much more complicated. The atmosphere is not a sudden end or border. Gaseous state does not tend to take the form for some reason except the following: as you climb higher, the particle density will continue to fall, which are heated by collisions, will move with different speed: some faster, some slower, but with a clearly defined average speed.

The higher you go, the more likely you will find particles that have more energy, because to rise to great heights need more power. The density of such particles at high altitude will, of course, lower, but never drops to zero.

We found the atoms and molecules that remain gravitationally bound to the Earth at altitudes of up to 10,000 kilometers. The only reason we did not go beyond 10,000 miles, that at this altitude the Earth's atmosphere becomes indistinguishable from the solar wind: both consist of hot atoms and ionized particles.

The vast majority of our atmosphere (by mass) is contained in the lowest layers in the troposphere account for 75% on the stratosphere for another 20% in the mesosphere — almost 5%. But the next layer, the thermosphere, is incredibly scattered.

While the atmospheric particle at sea level must travel a microscopic distance to collide with another molecule, the thermosphere is so diffuse that an ordinary atom or molecule can overcome the kilometer and with nothing to face.

The Thermosphere may seem like empty space, because even the atom can not be found. But rising to the height of the Earth's atmosphere, you linger in the back of this abyss of low density, being at your peak parabolic orbit, and then slowly return to their home planet under the force of gravity.

But if you spacecraft, you will experience something completely different. The reasons are as follows:

the
    the
  • You do not rise from the Ground and wrap around her in an orbit, that is, move in the opposite direction to the hot air particles.
  • the
  • Since you are in a stable orbit, you have to move fast: at least 7 miles per second to stay in space.
  • the
  • You have dimensions not of the atom but of the spacecraft.
  • These three points together lead to disaster for any of the satellite into orbit.

This disaster is inevitable because of the resistance faced by the satellite, which determines how much the speed of the satellite loses over time due to atmospheric particles that enter it at a relatively high speed. Any satellite in low earth orbit will have a lifespan from several months to several decades, but no more. You can fight it, climbing higher, but it won't help much.

Every time the Sun erupts with some activity, like sunspots, solar flares, coronal mass ejections or other explosive events, the Earth's atmosphere heats up. The hotter the particles, the higher the speed, higher speeds will mean that they rise above, increasing the density of the atmosphere, even in space. When this happens, even companions, which were almost beyond the gravitational attraction, begin to fall to the Ground. Magnetic storms can also increase the density of the air at extremely high latitudes.

And this process is cumulative, in the sense that since the satellite is experiencing attraction, its perigee drops to lower and lower altitudes. Now, at these lower altitudes, the drag force increases even more, and this leads to the fact that you lose your kinetic energy, which keeps you in orbit even faster. The final death spiral it may take thousands, tens of thousands or even hundreds of thousands of orbits, but because the orbit is completed in 90 minutes, any satellite in low earth orbit will live a few decades at best.

This problem of falling back to Earth was a problem not only for the firstsatellites of the 1950s years, but remained a problem for almost all satellites that we have ever launched. 95% of all created by people satellites are in earth orbit, including the International space station and the Hubble space telescope. If we periodically clocked these devices, many of them already fell to the Ground.

The Hubble and the ISS would be less than 10 years in their current orbits, if we just let them die. And while the great companions and die, they do so at the expense of uncontrolled entry into the atmosphere. Ideally, they should burn up in the atmosphere or fall into the ocean, but if the debris will fall on the people, would be a disaster.

And a telescope "Hubble", too, must fall to the Ground. Its orbit will decrease. The telescope will be fine, but with each orbit it will be closer and closer to Earth.

The Final mission of the telescope includes the docking mechanism, which was installed on the telescope: Soft Capture and Rendezvous System. Any fitted properly will be able to safely deliver the telescope back home.

But if you talk about 25 000 other satellites in low earth orbit, to carry out a controlled reentry is not possible. The Earth's atmosphere will drop them below the line of the Pocket, below the space that we drew. If you stop launching satellites today, a hundred years will not have any traces of presence of mankind on earth orbit.

"Sputnik-1" was launched in 1957 and just three months later he spontaneously descended from orbit and fell to the Ground. Particles in our atmosphere rises much higher than any of the artificial lines that we've drawn, affecting all our satellites. The farther away the perigee, the longer you'll stay in orbit. Until we have technology that will maintain the satellites in orbit without fuel, the Earth's atmosphere will remain the most destructive force in preventing human presence in space.

Good or bad? Tell us in our

Recommended

Video stream: Russian crew of the ISS went into space to check the holes in the

Video stream: Russian crew of the ISS went into space to check the holes in the "Union"

Russian cosmonauts Oleg Kononenko and Sergey Prokopyev has walked in space aboard the International space station (ISS). This is the third spacewalk this year according to the Russian program. Before the astronauts have an important task – to open pr...

Probe OSIRIS-Rex has sent a signal about presence of water on asteroid Bennu

Probe OSIRIS-Rex has sent a signal about presence of water on asteroid Bennu

the spacecraft OSIRIS-REx, launched in September 2016 to , beginning to bear fruit. Probe the space object recently, on 3 December, but have already discovered on the asteroid's surface water. According to researcher Amy Simon, we are not talking abo...

The probe

The probe "Voyager-2" reached interstellar space

Automatic spacecraft space Agency NASA "Voyager-2" has finally left the heliosphere – the region of space near the sun where the solar wind plasma is moving relative to the Sun at supersonic speed. Thus the unit became the second man-made space probe...

Comments (0)

This article has no comment, be the first!

Add comment

Related News

Elon Musk to live on Mars will not only the rich

Elon Musk to live on Mars will not only the rich

the issue with the colonization of Mars every year becomes more urgent, so interested in the environment begin to emerge of the expected conversations about the availability of the ticket to the Red planet: they say that "fun" wil...

How to visit a black hole without leaving home?

How to visit a black hole without leaving home?

Despite the fact that black holes appear in many science fiction movies, astrophysicists still don't know what they look like in reality. It seems that the time of ignorance has passed in part — researchers from the Netherlands un...

Scientists have found the explanation of the mysterious lines on Phobos

Scientists have found the explanation of the mysterious lines on Phobos

back in the 1970-ies, during the Mariner and Viking missions, the space Agency has received photographs of Mars and its satellite Phobos. That's when astronomers noticed that the moon's surface there is a mysterious band. They had...