The Universe has almost no antimatter. Why?

Date:

2019-02-21 01:15:19

Views:

3568

Rating:

1Like 0Dislike

Share:

The Universe has almost no antimatter. Why? Source:

When we look at the Universe, all its planets and stars, galaxies and clusters, gas, dust, plasma, we see everywhere the same signature. We see a line of atomic absorption and emission, we see that matter interacts with other forms of matter, we see star formation and death of stars, collisions, x-rays, and more. There is an obvious question that requires an explanation: why are we seeing all this? If the laws of physics dictate symmetry between matter and antimatter, that we see, must not exist.

But we're here and nobody knows why.

the

Why in the Universe there is no antimatter?

Think of these two contradictory at first glance, the facts:

    the
  1. Each interaction between particles, which we have ever observed at any energy, never created and did not destroy one particle of matter, without creating it or destroying an equal number of particles of animalerie. Physical symmetry between matter and antimatter is very strict, because:
the
    the
  • each time we create a quark or a lepton, we also create antiquark and antilepton;
  • the
  • each time a quark or lepton is destroyed, antiquark or antilepton also destroyed;
  • the
  • created or destroyed leptons and antileptons must be in balance for the whole family Leonov and every time the quarks and leptons interact, collide, or break apart, the total number of quarks and leptons at the end of the reaction (minus antiquark quarks, leptons minus antileptons) should be the same as it was in the beginning.

The Only way to change the amount of matter in the Universe also implies a change in the amount of antimatter in the same amount.

And yet, there is a second fact.

    the
  1. When we look at the Universe, all the stars, galaxies, gas clouds, clusters, superclusters and large scale structure, it seems like everything is made of matter and not antimatter. Everywhere, where antimatter and matter meet in the Universe, is a fantastic release of energy due to particle annihilation.

But we see no signs of destruction of matter and antimatter in the large scale. We see no signs that some of the stars, galaxies or planets which we see is made of antimatter. We do not see the characteristic gamma-rays which one would expect to see if antimatter faced with matter and annihilate. Instead, everywhere we see only matter everywhere you look.

And it seems impossible. On the one hand, there's no known way to make more matter than antimatter, if we turn to particles and their interactions in the Universe. On the other hand, all that we see, definitely consists of matter and not antimatter.

In fact, we observed the annihilation of matter and antimatter in some extreme astrophysical conditions, but only near giperarifmeticheskie sources that produce matter and antimatter in equal amounts — black holes, for example. When antimatter collides with matter in the Universe, it produces gamma rays of very specific frequencies, which can then be detected. Interstellar intergalactic environment is full of material, and the complete absence of these gamma rays is a strong signal that no longer has a large number of antimatter particles, because then the signature of matter-antimatter would have been detected.

If you leave one speck of antimatter in our galaxy, it will last about 300 years before being destroyed by a particle of matter. This restriction tells us that in the milky Way the amount of dark energy cannot exceed a value of 1 for particles in a quadrillion (1015), relative to the total amount of matter.

Large scale — scale of satellite galaxies, large galaxies the size of milky Way and even clusters of galaxies — constraints are less stringent but still very strong. Watching the distance of several million light years to three billion light-years, we observed lack of x-rays and gamma rays, which could indicate the annihilation of matter and antimatter. Even in large cosmological scales of 99.999% of what exists in our Universe, would be represented by matter (like us), and not antimatter.

How did we get in such a situation that the universe consists of a large number of matter and practically no antimatter, if the laws of nature are perfectly symmetrical between matter and antimatter? Well, you have two options: either the universe was born with a large amount of matter than antimatter, or something happened early on, when the universe was very hot and dense, and created the asymmetry of matter and antimatter, which initially was not.

The First idea to test scientifically without recreating the entire Universe will not work, but the second is very convincing. If our universe is somehow created the asymmetry of matter and antimatter, where originally it was not, then the rules that worked then remain unchanged today. If we're smart, we will be able to develop experimental tests that reveal the origin of matter in our Universe.

In the late 1960-ies physicist Andrei Sakharov outlined three conditions necessary for baryogenesis or create more baryons (protons and neutrons) than antibaryons. Here they are:

    the
  1. the universe should be non-equilibrium system.
  2. the
  3. it must be C - and CP-violation.
  4. the
  5. Needs to beinteractions that violate the baryon number.

First to observe simply because of the expanding and cooling universe with unstable particles (and antiparticles) are, by definition, will be out of balance. Second one is also simple as C-symmetry (the replacement of particles by antiparticles) and CP-symmetry (replacing the mirrored particles antiparticles) are violated in many weak interactions involving strange, charmed and beautiful quarks.

The question Remains as to violate baryon number. Experimentally, we observed that the balance of antiquarks to quarks and leptons to antileptons clearly remains. But in the Standard model of particle physics there is no explicit conservation law for any of these variables individually.

You Need three quarks to make a baryon, so for every three quark, we assign the baryon number (B) 1. Similarly, every receive lepton lepton number (L) 1. Antiquark, antibaryon and antilepton will have negative numbers B and L.

But according to the rules of the Standard model is stored only the difference between baryons and leptons. Under the right circumstances, you can not only create additional protons, but also electrons to them. The exact circumstances are unknown, but the Big Bang has given them the opportunity to be realized.

The very first stages of existence of the Universe describes the incredibly high energy: high enough to create every known particle and antiparticle in a large number on the famous Einstein formula E = mc2. If the creation and destruction of particles works the way we think the early universe must be filled with an equal amount of particles of matter and antimatter, which mutually become each other because of the energy remained extremely high.

With the expansion and cooling of the Universe unstable particles, once created, in abundance, will be destroyed. Under the proper conditions — in particular, the three Sakharov conditions — this can lead to an excess of matter over antimatter, even if initially it was not. The challenge for physicists is to create a viable scenario corresponding to observations and experiments, which can give you a sufficient excess of matter over antimatter.

There are three main possibilities of occurrence of the excess of matter over antimatter:

the
    the
  • a New physics in the electroweak scale can significantly increase the number of C - and CP-violation in the Universe, which will lead to asymmetry between matter and antimatter. Interactions of the Standard model (through the process of sphaleron), which violate B and L individually (but keep B — L) may set the amounts of baryons and leptons.
  • the
  • New neutrino physics at high energies, which suggests the universe could create a fundamental asymmetry of leptons: leptogenys. Sphaleron that preserve B — L, and then could use the lepton asymmetry to create a baryon asymmetry.
  • the
  • Or borigines the scale of Grand unification, if the new physics (and new particles) exist in the scale of Grand unification, when the electroweak force merges with the strong.

These scenarios have common elements, so let's look at the last one, just for example, to understand what could happen.

If the Grand unified theory is correct, must be new, superheavy particles, called X and Y, which have as brianpdoyle and leptonetidae properties. Must also be partners of antimatter: anti-X and anti-Y, with the opposite numbers B — L and opposite charges but the same mass and life time. These pairs of particle-antiparticle can be created in large quantities at rather high energies, in order to subsequently disintegrate.

So we fill the Universe with them, and then they disintegrate. If we have C - and CP-violation might be minor differences in how the decay of particles and antiparticles (X, Y and anti-X, anti-Y).

If you have X-particles there are two ways: the decay into two top quarks and two anti-bottom quark and a positron, then anti-X must pass two related ways: two anti-top quark or bottom quark and the electron. There is an important difference that is allowed for violation of C and CP: X may be more likely to decay into two top quarks than anti-X — two anti-top quark, whereas the anti-X are more likely to decay into bottom quark and the electron, than X — anti-top quark and a positron.

If there is a sufficient number of pairs and decay so you can easily get an excess of baryons over antibaryons (and leptons over antileptons), where it did not exist.

This is just one example illustrating our view of what happened. We started with a completely symmetrical Universe, obeying all known laws of physics, and with a hot, dense, rich state, filled with matter and antimatter in equal amounts. Using the mechanism that we have yet to determine, subject to the three conditions of Sakharov, these natural processes are ultimately created a surplus of matter over antimatter.

The fact that we exist is made of matter, is undeniable; the question is, why our universe contains something (matter) and nothing (because of matter and antimatter were equally). Perhaps in this century we find the answer to this question.

Why do you think the Universe has almost no antimatter? Tell us .

Recommended

What will be the shelter for the first Martian colonists?

What will be the shelter for the first Martian colonists?

Mars is not the friendliest planet for humans While the Red Planet is roaming rovers, researchers are pondering the construction of shelters and materials needed by future Martian colonists. The authors of the new paper suggest that we could use one ...

New proof of string theory discovered

New proof of string theory discovered

Just a few years ago, it seemed that string theory was the new theory of everything. But today the string universe raises more questions than answers String theory is designed to combine all our knowledge of the Universe and explain it. When she appe...

What is the four-dimensional space?

What is the four-dimensional space?

Modeling camera motion in four-dimensional space. View the world in different dimensions changes the way we perceive everything around, including time and space. Think about the difference between two dimensions and three dimensions is easy, but what...

Comments (0)

This article has no comment, be the first!

Add comment

Related News

NASA has made stem cells

NASA has made stem cells "invisible" to the immune system

Scientists from the University of California at San Francisco used a system of gene editing CRISPR-Cas9 to create the first pluripotent stem cells, which are functionally "invisible" to the immune system. This event is biological ...

Is it possible to learn in your sleep? It is possible

Is it possible to learn in your sleep? It is possible

From chronic insomnia help audio books, podcasts, and sleeping pills. If you load books on all night, they will gradually penetrate into dreams. And the funny thing is, sometimes you can even remember what he heard in the morning....

What

What "super powers" possess people?

before we discuss why people like themselves believe in them. Superheroes in our days everywhere: television shows, movies, games. There are even toy versions of the superheroes — who have not played with these "people-spiders" ma...

Earth unique is life on other planets quickly died

Earth unique is life on other planets quickly died

"Riddle of why we haven't found any signs of aliens, maybe not so much connected with the probability of emergence of life or intelligence, but with the extremely rapid emergence of the biological regulation of feedback loops on a...

Programmer-biohacking, grown rich on bitcoin, plans to create designer babies

Programmer-biohacking, grown rich on bitcoin, plans to create designer babies

Keyboard Brian Bishop in Austin, Texas, were literally steaming. Recognized nationwide high-speed typewriting, he was preparing a polite request, well-known futurist from the UK. Wanted to get advice about their "startup designer ...

We need more powerful nuclear engines to explore space. The production of plutonium-238 is growing

We need more powerful nuclear engines to explore space. The production of plutonium-238 is growing

last year, "Voyager 2" finally broke through to interstellar space, having more than 18 billion kilometers. This epic mission was possible thanks to nuclear energy technology which spacecraft worked for decades. The spacecraft, si...

Artificial intelligence will determine your age on intestinal microflora

Artificial intelligence will determine your age on intestinal microflora

Many bacteria and other tiny organisms that live in your gut, which is often referred to as the microbiome or microflora, to not just help you digest food and fight diseases. As described in detail in a new study, they also provid...

How did the periodic table of elements periodic

How did the periodic table of elements periodic

every field of science is your favorite anniversary. Physicists it's "Principles" Newton's book of 1687, which introduced the laws of motion and gravity. Biologists celebrate Darwin's "Origin of species" (1859) and his birthday (1...

Underground microbes has almost reached immortality

Underground microbes has almost reached immortality

last month, the Deep Carbon Observatory announced the astounding fact: the mass of microbes living beneath the Earth's surface, is from 15 to 23 billion tons of carbon, about 245-385 times the mass of carbon of all people. It is a...

The dream of physicists: what colliders would be much cooler than the Large hadron?

The dream of physicists: what colliders would be much cooler than the Large hadron?

If the physics of elementary particles get their way, new accelerators will be able one day to thoroughly explore the curious sub-atomic particle in physics — the Higgs boson. Six years after the discovery of this particle at the ...

A scientist accidentally found the oldest version of the periodic table

A scientist accidentally found the oldest version of the periodic table

Sometimes you can discover truly amazing and incredibly valuable things, conducting a General cleaning of the room, is where the most cleaning is never really done. Don't believe? Just ask the doctor of chemistry Alan Aitken of St...

CERN wants to build the biggest and coolest Collider particles in the Universe

CERN wants to build the biggest and coolest Collider particles in the Universe

actually, I deliberately made a mistake in the title. Colliders — quite a natural phenomenon that often occurs in our Universe. face split in stars and black holes at energies that are even difficult to imagine. However, the pride...

Scientists: nuclear power is the only salvation from climate catastrophe

Scientists: nuclear power is the only salvation from climate catastrophe

to reduce emissions of greenhouse gases and save the planet from global warming, many countries are trying to switch to renewable energy sources. To do this, they build solar and wind farms that take up huge area of land. Scientis...

The Nobel laureate lost premiums due to racist remarks

The Nobel laureate lost premiums due to racist remarks

In 1962, American biologist James Watson won the Nobel prize in physiology or medicine for the discovery of the structure of the molecule . In my entire career of 90-year-old scientist had to give a lot of scandalous interviews in...

Scientists have learned to look for the bacteria generating electricity

Scientists have learned to look for the bacteria generating electricity

Some bacteria can generate electrical energy, and scientists intend to use them as an unusual property for electrochemical devices, fuel and wastewater treatment. As a rule, unusual bacteria exist in environments with low oxygen c...

The satellites captured the storm that lifts a 17-foot waves in the Pacific ocean

The satellites captured the storm that lifts a 17-foot waves in the Pacific ocean

In the Pacific ocean, the raging storm, which despite its huge size, has no name. It is clearly visible from the orbit of the Earth — shocking picture was captured not one, but two meteorological satellites from different countrie...

SpaceX will dismiss 10% of its employees to focus on what's important

SpaceX will dismiss 10% of its employees to focus on what's important

Aerospace company private space transportation that will take us one day to Mars, reduces 10% of the workforce, almost immediately after the first successful rocket launch for a satellite operator Iridium. The news, first publishe...

For all time, scientists have deciphered at least 1% of the data of the Large Hadron Collider

For all time, scientists have deciphered at least 1% of the data of the Large Hadron Collider

the Large Hadron Collider — is one of the most amazing inventions of mankind, responsible for the discovery of numerous subatomic particles, including the elusive Higgs boson. And recently, new data hint at new discoveries b...

For all time, scientists have deciphered at least 1% of the data of the Large Hadron Collider

For all time, scientists have deciphered at least 1% of the data of the Large Hadron Collider

the Large Hadron Collider — is one of the most amazing inventions of mankind, responsible for the discovery of numerous subatomic particles, including the elusive Higgs boson. And recently, new data hint at new discoveries b...

The new model of the Universe explain dark energy

The new model of the Universe explain dark energy

Researchers from Uppsala University in Sweden have proposed a new model of the Universe, capable, in their opinion, to solve the mystery of dark energy, which according to many theoretical physicists, responsible for the expansion...