In the future we are not going to edit the genome. We will create a new

Date:

2018-02-26 11:00:10

Views:

299

Rating:

1Like 0Dislike

Share:

In the future we are not going to edit the genome. We will create a new

Ever since the Sumerians first want to drink beer, and that was thousands of years ago, Homo sapiens had close relationships with Sacharomyces cerevisae, unicellular fungi known as yeast. Due to the fermentation that people can use this microscopic view for their own purposes. In our days, the yeast cells produce ethanol and insulin, they do experiments in laboratories.

This does not mean that S. cerevisiae can no longer be improved – in any case, according to Jeff Smartly. Director of the Institute of genetic systems at new York University, the Striker led the international team of hundreds of people whose job it is to synthesize 12.5 million genetic letters that make up the genome of yeast cells.

In practice, this means the gradual replacement of each chromosome of yeast – and those of 16 chemically synthesized DNA. The striker and his colleagues nearly ten institutions dismantled the yeast genome and allow scientists to mix his genes in its sole discretion. Ultimately, synthetic yeast Sc2.0 – configures entirely.

"over the next 10 years, synthetic biology will produce all kinds of compounds and materials with microorganisms," says the Striker. "We hope that our yeast will play a big role in this".

Think about this project as something like the first car of Henry Ford, assembled by hand and one of a kind. One day, however, we will be quite normal to design genomes on a computer screen. Rather than develop or even edit the DNA of an organism, it would be easier just print a fresh copy. Imagine a designer algae that produce fuel; trouble free; resurrected extinct species.

"I Think it may be larger than the space or the computer revolution," says George Church, studying the genome at the Harvard school of medicine.

Previously, scientists have synthesized genetic instructions that control viruses and bacteria. But yeast cells eukaryote, that is, keep their genomes in the nucleus and bind their chromosomes as humans. Their genomes are also much more.

This is a problem because to synthesize DNA is not so cheap as to describe. Today the human genome can be sequenced for $ 1,000, and the price is constantly falling. But to replace every letter of DNA in yeast, the Striker will need 1.25 million dollars. Add the cost of labor and calculation to the total cost of the project.

Together with the Church and other the Striker headed GP-write, organization serving for international studies, which should reduce the cost of design, development and testing of the genomes of a thousand times in the next ten years. "We face all sorts of problems as a species, and biology can greatly help us on this planet," he says. "But only if we will reduce costs".

the

«Bottom-up»

A Scientist named Ronald Davis from Stanford, first suggested the possibility of the synthesis of the genome of yeast at the conference in 2004. However, at the time the Striker didn't see the point. "Why anyone would need it to do?" — so he thought then.

But the Striker came to the conclusion that the production of a yeast genome can be the best way to understand the body. Replacing every part, you will be able to know what genes are required, and no organism can live. Some team members call the idea "build to understand".

"It's another way to understand how living beings," says Leslie Mitchell, the honored worker of the laboratory of NYU and one of the main developers of synthetic yeast. "We know what gaps in our knowledge exist, applying the approach «bottom-up» in genetics".

Joel Bader, computer science from Johns Hopkins University, is developing software that allows scientists to see the chromosomes of yeast on the screen and track versions as they change, like a biological Google Docs. In 2008, to make DNA, the Striker started the undergraduate course at the University called "Build a genome" (Build a Genome). The students had to learn basic molecular biology, collecting a continuous ribbon of 10,000 letters of DNA that was supposed to go in a project to create synthetic yeast. Later, several institutions from China joined the project, and this was followed by the British, Australians, and Japanese.

"We distribute the chromosomes separate teams, like the chapters of a book, and they are free to decide what to do with them, but so that it is 100% in line with our objectives," said Patrick Kay, a synthetic biologist from the University of Manchester, international project coordinator with yeast.

the

Next steps

The Striker and his team took eight years, that they could finally present their first completely artificial chromosome yeast. Since then, the project has accelerated. In March last year, five synthetic yeast chromosomes have been described in the papers in Science, and the Striker has stated that all 16 chromosomes is currently set to 80 percent. These efforts have helped to collect the greatest amount of genetic material ever synthesized, and then combined.

Helped by the fact that the yeast genome has proved to be extremely resistant to the visions and developments of the team. "Probably the biggest breakthrough is that you can torture the genome as anything, and the yeast will just laugh," said the Striker.

The Striker and his colleagues have not just replaced the natural genome of synthetic yeast. "Just to make a copy it would be foolish," says Church. In the DNA of this organism, they also put molecular spaces, like invisible holes in the steel rings of a magician. This allowed them to mix the chromosomes of yeast "like a deck of cards," says Kai. This system is now known as SCRaMbLE (synthetic chromosome recombination and modification by LoxP-mediated evolution).

The result is a high-speed evolution undertaken by human forces: millions of new yeast strains with different properties can be tested in a laboratory to find a use for them in medicine and industry. Mitchell predicts that Sc2.0 will eventually replace all the other yeast in scientific laboratories.

The ultimate legacy of the project the Striker can be deciding which gene to synthesize next. Group GP-write was originally assumed that the creation of a synthetic human genome could become a "Grand challenge." But some of bioethics questioned and thoroughly criticized the plan. The striker stressed that the group "will not do the project aimed at the creation of human with a synthetic genome." That is, no design people.

But if we put aside ethical considerations, the synthesis of the complete human genome, which is 250 times larger than the genome of yeast, impractical using modern methods. Also, such efforts do not receive funding. Work Smartly with yeast was funded by the National science Foundation and academic institutions, but the Grand initiative GP-write failed to attract significant support beyond the initial donation of $ 250,000 from the software company Autodesk. Compare this with the Human Genome Project, which has received over 3 billion US dollars in funding.

"This revolution, which we don't want to sleep," says Church. "If the Federal government and all 50 States will not want to do this, we will reap what we sow. We'll stay behind."

Meanwhile, the work continues, base for base. Among the magazine covers and group photos Smartly keeps the quote on the door of his office, which was attributed to the genetics of Theodosius Dobzhansky: "Nothing in biology makes sense except in the light of evolution." No matter how Grand, was the project Sc2.0 – even if it would lead to the synthesis of the genome of the mouse or the creation of pigs for organ transplants to people – it is people who will guide this evolution in the right direction. Sc2.0 may be the second most important achievement, which led to yeast. After a beer.

...

Recommended

Scientists have created a two-dimensional electron lattice kagome

Scientists have created a two-dimensional electron lattice kagome

Scientists from the University of Wollongong in collaboration with colleagues from the Chinese University Beihang, University Nankai and the Institute of physics of the Chinese Academy of Sciences have successfully created two-dimensional e-lattice k...

The former administrator of NASA:

The former administrator of NASA: "Lunar gateway — stupid architecture"

In recent weeks, the official NASA representatives were actively promoting the proposed "Gateway", which will serve as a space station on a remote orbit, near the moon. The Agency has proposed that intermediate step, instead of returning directly to ...

Chinese tokamak plasma heated to 100 million degrees Celsius

Chinese tokamak plasma heated to 100 million degrees Celsius

using the experimental advanced superconducting tokamak (EAST), which is called Chinese "artificial sun", the physicists were able to heat plasma to 100 million degrees Celsius (which is 6 times hotter than the core of our star) and reach a heating o...

Comments (0)

This article has no comment, be the first!

Add comment

Related News

For the first time, scientists want to move the stuff from one place to another

For the first time, scientists want to move the stuff from one place to another

We all seen and read about how the hero of some sci-Fi movie or book flying on a spaceship that uses as fuel the antimatter, and then landed on a hostile planet, pulls out his Blaster, charges of antimatter and... What happens nex...

How to become a fossil?

How to become a fossil?

Every fossil is a small miracle. As noted by bill Bryson in his book "a Short history of almost everything", just one bone in a billion becomes a fossil. In such calculations, all fossilized legacy of the 320 million people living...

Scientists have invented a new way to store data inside DNA

Scientists have invented a new way to store data inside DNA

the Future of technology lies not only in the constant growth of computing power of processors or the transition to quantum computers, but also in the evolution of storage devices. Humanity generates a huge amount of information, ...